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Simple Characterizations of Potential Games and
Zero-sum Equivalent Games
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Abstract

We provide several tests to determine whether a game is a potential game or
whether it is a zero-sum equivalent game—a game which is strategically equiv-
alent to a zero-sum game in the same way that a potential game is strategically
equivalent to a common interest game. We present a unified framework applica-
ble for both potential and zero-sum equivalent games by deriving a simple but
useful characterization of these games. This allows us to re-derive known cri-
teria for potential games, as well as obtain several new criteria. In particular,
we prove (1) new integral tests for potential games and for zero-sum equivalent
games, (2) a new derivative test for zero-sum equivalent games, and (3) a new
representation characterization for zero-sum equivalent games.
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1. INTRODUCTION

We provide several tests to determine whether a game is a potential game or
whether it is a zero-sum equivalent game—a game which is strategically equiv-
alent to a zero-sum game in the same way that a potential game is strategically
equivalent to a common interest game (see Definition 1 and also Section 11.2 in
Hofbauer and Sigmund, 1998). We present a unified framework applicable for
both potential and zero-sum equivalent games by deriving a simple but useful
characterization of these games. In particular, we propose (1) new integral tests
for potential games and for zero-sum equivalent games, (2) a new derivative test
for zero-sum equivalent games, and (3) a new representation characterization
for zero-sum equivalent games. We also re-derive known criteria for potential
games, such as Monderer and Shapley (1996), Ui (2000) and Sandholm (2010),
as well as obtain several new criteria.

An advantage of our approach is that our new integral tests can be applied
to normal form games with continuous strategy sets as well as those with finite
strategy spaces, whether payoff functions are discontinuous or not. Many pop-
ular games with continuous strategy sets, such as Bertrand competition games
and Hotelling games, have discontinuous payoff functions. It is well-known that
games with continuous strategy sets and discontinuous payoff pose special chal-
lenges such as the existence of Nash equilibria (see, for example, Reny, 1999).
Our integral test provides a useful tool to study this class of games. In the case
of finite strategy sets our test reduces to the test in Sandholm (2010).

The integral test for potential games is also easier to implement than the
cycle condition in Monderer and Shapley (1996)’s Theorem 2.8 (see Remark
1). For, say, a two-player game our integral test requires checking the values of
a function at two different points, while the cycle condition requires checking
the values of a function at four different points. For finite strategy sets, Hino
(2011) and Sandholm (2010)’s algorithms checking for potential games have
complexity O(n?) and the integral test has the same complexity.

We also study in detail zero-sum equivalent games and provide integral and
derivative tests as well as representations of those games. While the derivative
test for potential games is well-known (Monderer and Shapley, 1996 Theorem
4.5), the derivative test for zero-sum equivalent games is new and provides an
easy and convenient way to check if a game is zero-sum equivalent when the
payoff function is sufficiently smooth (Proposition 3). The usefulness of this test
is illustrated in Example 2 where we analyze contest games. Finally, we provide
a representation characterization (Proposition 4) which generalizes to zero-sum
equivalent games the result in Ui (2000).
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In the existing literature, conditions for potential games, such as Monderer
and Shapley (1996), Ui (2000) and Sandholm (2010), are regarded as distinct and
derived by different methods (see, e.g., the discussion in Section 3 in Sandholm,
2010). Our result provides a unified framework to understand and generalize
(also to zero-sum equivalent games) these conditions.

2. MAIN RESULTS

We follow the setup in Hwang and Rey-Bellet (2017) where we provide gen-
eral decomposition theorems for n—player games. Let N be the set of all player
indexed by i € N ={1,--- ,n}. Let §=8] x--- x S, be the space of all strat-
egy profiles where S; is the set of strategies for the i player. Let m; be a finite
measure on S; and m be the product measure m :=m; X --- X m,. We denote by
u) the payoff function for the i’ player, where u) : § — R is a (measurable)
function. For fixed n and S, a game is uniquely specified by the vector-valued
function u := (u"), u®, ... u™). We use the notation g(s_;) for a function
which does not depend on its i-th argument. If the payoff for the i’ player has
the form u(®) (s) = g{0(s_;) then her payoff does not depend on her own strategy
(also called a passive game). It is easy to see that if two game payoffs differ by
a passive game for each player, then they have the same Nash equilibria and best
response functions—these are called strategically equivalent.

Definition 1. We have:
(i) A game u is a potential game if there exists a function v and functions g)’s
such that

M (5),u®(s),- -, u™ (s))

= (V(S),V(S), T ,V(S)) + (g(l)(sfl)ag(Z)(s*Z)f o ag(n>(s*n))v foralls'

(ii) A game u is a zero-sum equivalent game if there exists functions v\)’s with
Ziv(i) = 0 and functions g)’s such that

= (WD (5),v2(s), - 1 () (1 (5-1), 6% (5-2), -+ 18" (5-)), foralls.

The definition of a potential game in Monderer and Shapley (1996) is that u is
a potential game if there exists a function v such that u\) (s;,s_;) — ul)(5;,5_;) =
v(si,s—;) —v(s;,s_;) for all s;,5;,5_; and all i. This is easily shown to be equiva-
lent to Definition 1.
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The next proposition is simple but important since it recasts the definitions
of potential and zero-sum equivalent games without reference to unknown func-
tions v or v in Definition 1. This will provide the key ingredient to establish
our criteria.

Proposition 1 (Characterization). We have:
(i) A game u is a potential game if and only if there exist functions g\)’s such
that for all i, j

() =g (s ) = ul(5)~ g5 n
forall s.

(ii) A game u is a zero-sum equivalent game if and only if there exist functions
g(’) ’s such that

n [u(i)(s)—g(i)(s_i) —0 )
=1

1

forall s.

Proof. The “only if” parts are trivial. Conversely, let us assume that there exist
g(i)’s which satisfy the conditions (1) or (2). Then, if we write

(M(l)(s)’u(Z)(S)v... ,u(n)(s))
= (u(l)(s) _g(l)(sfl)’u(Z)(s) _g(Z)(LZ), ... ’u(n)(s) —g(”)(s,n))
+(gW(s-1),8%(s2), -+ 8" (s )

we see that u is a potential game if (1) holds and that u is a zero-sum equivalent
game if (2) holds. L]

For our integral test, we introduce the following operator.
Definition 2. For an integrable function h:S — R, we define T; by
Tih(s) = — [ h(s)ami(s)
h(s) i = ——— s)dm;(s;).
1 ml (Sl) 1 1

Note that 7; and 7; commute and that we have the identity

I=T)U=T;) =1—= (L +(I=T)T;), 3)
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where [ is the identity operator. And, by induction,

n

[Ju-m)=1- ff{l T, @)

=1 Jj=21=1

Note as well for any s, T;h does not depend on s;. We next prove our integral
tests.

Proposition 2 (Integral Tests). We have:
(i) A game u is a potential game if and only if

(1= T)(1 =T (" —ut) =0. 5)

foralli,j.
(ii) A game u is a zero-sum equivalent game if and only if

Y T[u-1)u” =0. (6)

i=11=1

Proof. Suppose that a game is a potential game (or a zero-sum equivalent game).
Equation (5) (or (6)) follows from equation (1) (or equation (2)) in Proposition
1. Thus, only if parts in (i) and (ii) hold. For the if part in (i), suppose that (5)
holds. Recall that N is the set of all players and let i € N be fixed. Note that

I=(=t)+Ti= Y [TTI50-T)+T

MCN I¢gM keM
M>i
Thus,

=(Y TTII -1, -, Y TTI] 50 - 1)u) + (TuV, - Tu™)

MCngMkeM MCngMkeM
M>n

Then, we have

[TT1 %0 -10u” = [T [ 50— T) (I = T)( - T;)u®

1M keM IEM keM

ki, j
=[I[]n0-1)U-T) I -T)u =[] [] i — T)u
lnggVIJ IEM keM

(7
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which shows that for all i, j € M such that M| > 2,

[TIIn0-1)u” =TI [] 50 - Ti)u

M keM 1M keM

Thus, we can define

& =1 [1 %0 - Tu®

igMkeM

for any i € M C N. Then, we have

MCN I¢M keM MCN MCN MFi
M>i M>i M0 M#0

and Y.y Eu does not depend on s;, because &y, does not depend on s; for I ¢ M.
M0

Since neither T;u'Y depends on s;, u is a potential game.

For the if part in (ii), from (4) we obtain

n n

Y [TU-7u® =[Ju-1) Y u =0

i=11l=1 =1 i=1

n J— n
if and only if )" u? leu ZH[ T)T; Y u.

i=1 j=21=1 i=1
Again, observe that 7; Y7, ul) does not depend on s and H[ 1(I Ty,
does not depend on s;. Thus from Proposition 1, u is a zero-sum equlvalent
game. O

Remark 1. (The cycle condition) The integral test can be compared to the
well-known cycle condition of Monderer and Shapley (1996) (Theorem 2.8).
Consider a two player game. The cycle condition requires the following four
variable function, ®(sy,s7,57,52), to be identically zero

D(s1,52,51,82) 1= [’4(1)(517&) —”(1)(S1,S2)} + {“(2)(5152) —”(2)(51#2)]

+ [u(‘)(sl,'sE) —u(”(?l,?z)} + [M(z)(slaSZ) —M(2>(51752)] )

while our integral test requires that the following two variable function, ¥(s1,s2),
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to be identically zero
(D) 1 (1) (ot ;1 (Do g
W(sy,s2) :=u""(s1,82) — s u'(sy,82)ds| — 5] u'’(s1,s5)dsy

1 1
+ AT /u(l)(s’l,s/z)ds’ldslz—u(Z)(sl,szH—’S]’/u(z)(s’l,sz)ds'l

1 1
+ @ u? (s1,85)dsh — |SI|SZ/u(z)(sll,slz)ds'ldslz

Thus, the cycle condition requires checking the values of a function of four vari-
ables, while the integral test for potential games requires checking the values of
a function of two variables—this implies a significant reduction of the compu-
tational complexity. For instance, if we numerically compare two functions at
n different points, the number of equalities to be checked under our test is or-
der n?, while this number under the cycle condition test becomes order n* (see
the related discussion on p.200 in Hino, 2011). Note as well that in Hwang and
Rey-Bellet (2017) we prove a cycle-like condition for games which are zero-sum
equivalent.

If S is a finite set and m is the counting measure, then the integral test for po-
tential games becomes the condition by Sandholm (2010). For the convenience
of the reader, we provide a two-player version.

Corollary 1 (Sandholm, 2010). A two player game with payoff matrices (A,B)
is a potential game if and only if

Aji— Aji—
i T 5 ”*\sluszrz g
i |S|Z v \S\Z o |51 \Szwz .

For the derivative test one needs to assume that strategy sets S; consist of
intervals and that payoff functions u?) are twice continuously differentiable on
S. An elementary fact from calculus is that if function g is twice continuously
differentiable, then

0%g
8s,-8sj

(s) = 0if and only if g(s) = G(s—;) + K(s_)

for some G and K. From this, it is easy to derive a derivative test for potential
games (Monderer and Shapley, 1996, Theorem 4.5). We also provide a similar
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test for zero-sum equivalent games.

Proposition 3 (Derivative Tests). Assume that the strategy sets are intervals.
Then we have:

(i)(Monderer and Shapley, 1996) If u is twice-continuously differentiable, the
game u is a potential game if and only if for all i, j

92u® 92ul))
asiaSj 5= 8s,~8sj s

®)

forall s.
(ii) If u is n-times continuously differentiable, the game u is zero-sum equivalent
if and only if
ud
=0. 9
Z8s18sz 3sn( 5) = ©)

forall s.

Proof. Again, from Proposition 1 “only parts” easily follow. For “if” parts, (i)
follows from the remark before Proposition 3. For (ii), we observe that

n (i)
afthc.h():zoifandonlyif
1052 n

Y u(s) =g (1) +2(s-2) 4+ +£"(s-0).
O

Finally, our last results are alternative representations which are useful to
identify games.

Proposition 4 (Representation). We have:
(i) (Ui, 2000) A game u is a potential game if and only if there exist functions w
and h\)’s such that

u®(s) =w(s)+ Y h" (s_). (10)

I+

forall s.
(ii) A game u is a zero-sum equivalent game if and only if there exist a constant
¢, functions w9 s and h\)’s such that ¥, w\) (s) = ¢ and

ul®(s) = wi(s) + Zh(l) s

I7i
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forall s.

Proof. Observe that for the “if” part in (i)

u®(s) —ul)(s) = Zh(l)( Zh R (s_ ;) —hD(s_;).
I#i I#£j
If we let g (s_;) := —h()(s_;), then the asserted claim follows from Proposition

1. For the “if” part in (ii), we have

Xn:u(i)(s):c—i-zn:z:h( (s—4 —c—i—ZZh

i=1 i=11%i =1i#l ]

(= +(n—1)hD(s_y)),

M=
B\O

1

and if we let g)(s_;) := St (n— 1)A"(s_;), then the assertion follows from
Proposition 1. Conversely, let u be a potential game. Then from Proposition 1,
there exist function g?)’s satisfying (1). Then we write

u®(s) = u®(s) — gV (s_y) + g9 (s_)) + Zg(l) (s_1)— Zg(l)
I#i I#i

—w(s)

and A (s_;) := —g\(s_;). Similarly, if u is a zero-sum equivalent, from Propo-
sition 1, there exist function g(!’s satisfying (2). Then,

u () = u®(s) — g9 (s ;) + (s —7Zg S +7Zg
I#i l;él

=wli) (s)

Observe that Y7, n%lx#,-g(”(s,l) =y" ¢¥(s;). We also have h)(s_;) =
n%l g (s_;). From these “only if” parts follow. O

The first part of Proposition 4 is closely related to Theorem 3 in Ui (2000).
It is identical for two-player games and easily seen to be equivalent in general.
Proposition 4 provides a useful tool to verify if a game is a potential game or a
zero-sum equivalent. For example, if u()(s) = w)(s) +h)(s;), as is often the
case in economics models with quasi-linear utility functions where benefit and
cost functions are separable, one ignores the cost term depending on his own
strategy to determine if the game is potential or zero-sum equivalent.

Figure 1 summarizes the relationships between various conditions developed
in this paper. All our conditions are derived from Proposition 1. We first derive
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Remark 1 Proposition 4
Cycle Conditions ------------------- Representations

N

3 Proposition 1 1

N

Proposition 3 Proposition 2

Derivative Tests Integral Tests

Figure 1: Relationships between various conditions.

the integral tests from Proposition 1 (Proposition 2). We then derive the deriva-
tive tests (Proposition 3) and derive the representation characterizations (Propo-
sition 4). A cycle condition for zero-sum equivalent games appears in Hwang
and Rey-Bellet (2017).

3. EXAMPLES

We illustrate our results with two simple examples. First we discuss the
integral test for potential games.

Example 1. (Integral test for potential games) Consider a two-player game
where the strategy sets are two intervals S; and S, with Lebesgue measures |5 |
and |S,|, respectively, and the payoffs are u'")(sy,s,) and u(® (s;,s,). By def-
inition the game is a potential game if the payoff has the form u(l)(s],sz) =
v(s1,52) + g1 (s2) and u® (s1,52) = v(s1,52) +g? (s1). Then it is easy to check
that we have the equality

1 1 1
1 o 1) _ (1) - (€]
ul (s1,52) 5 /u (s1,82)ds; 5l /u (s1,82)dsy + A /u (s1,82)ds1dsy

1
1S11[S2]

1 1
=u® (s1,82) — |Sl|/u(2) (s1,82)ds) — |S2|/u(2) ($1,82)ds2+ /u(z) (s1,82)ds1dss .

(1D
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Our integral test asserts that if equation (11) holds, the game is actually a po-
tential game. By the symmetry of the formula in s; and s,, one also sees that
if the payoffs have the form u(!)(s1,s7) := v(s1,52) + ¢(s1) and u® (s1,s,) :=
v(s1,52) + W(s2), then the condition (11) holds and thus the game is a potential
game. More explicitly, we can write

(D (s1,52),u? (51,52))

= (v(s1,52) + @ (s1) + W(s2),v(s1,52) + W(s2) + @ (s1)) — (W(s2),9(s51))

which shows that u is a potential game. This provides the characterization of
potential games in Proposition 4. Although somewhat trivial, this example illus-
trates our integral test in the simplest possible setting.

Next we use our derivative test for a class of contest games.

Example 2. (Contest games) Suppose that §; = S, = (0,0) and consider the
following contest game (see, e.g., Konrad, 2009). For f positive, define

f(sl) f(s2) V—CQ(SQ)
f(s1)+ f(s2) f(s1)+ f(s2) '
(12)

We set pI(sy,52) == f(s1)/(f(s1) + f(s2)) and p®(s1,5) := 1 — p(D(sy,57)
which are the probabilities of winning a prize of value v. Here, s; is the amount
of resources invested in the contest to obtain the prize while ¢;(s;) is its associated
cost.

uV(s1,52) = v=ci(s1), u® (s1,52) =

Our derivative test for zero-sum equivalent games (see Proposition 3) asserts
that when the payoffs are differentiable, a game is equivalent to a zero-sum game
if we have the equality

92uV) 0%u?
(Sl N S2) + m

ds10s, (s1,52) = 0.

Indeed we have

92 92,2 92p) 92p
+ = +v =
851352 aS1aS2 aS1aS2 aS1aS2

from p((sy,50) + pP (s1,82) = 1. If f(s;) = 5;* where o < 1 and c;(s;) = si,
the game in (12) admits a pure strategy Nash equilibrium (Konrad, 2009).
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4. DISCUSSION

We developed systematic ways of studying potential games and zero-sum
equivalent games. We provided simple characterizations for potential games
and zero-sum equivalent games (Proposition 1), from which we obtained new
integral tests (Proposition 2), and a new derivative test for zero-sum equivalent
games (Proposition 3). Our methods are general and require few assumptions
on the game structure; for example, discontinuous payoff function games can be
studied by the integral tests.

The advantage of the integral tests lies in that it can be applied to games with
discontinuous payoff functions, as we mentioned earlier. Discontinuous payoff
functions are often used in modeling competitive activities such as auctions and
contests. The disadvantage of the integral tests is that it is sometimes difficult
to evaluate integrals, and hence implementing the tests may be harder. Since
differentiation is easier than integration in general, the derivative tests have an
advantage in that it can be implemented easier, with the disadvantage in lim-
ited applicability; that is, the derivative tests can only be applied to games with
differentiable payoff functions.



SUNG-HA HWANG AND LUC REY-BELLET 13

REFERENCES

Hino, Y. (2011). “An Improved Algorithm for Detecting Potential Games,” In-
ternational Journal of Game Theory 40, 199-205.

Hofbauer, J. and K. Sigmund (1998). Evolutionary Games and Population Dy-
namics, Cambridge Univ. Press, Cambridge.

Hwang, S.H. and L. Rey-Bellet (2017). “Strategic Decompositions of Nor-
mal Form Games: Zero-sum Games and Potential Games,” available at
arXiv:1602.06648.

Konrad, K.A. (2009). Strategy and Dynamics in Contests, Oxford University
Press, Oxford.

Monderer, D. and L.S. Shapley (1996). “Potential Games,” Games and Economic
Behavior 14, 124-143.

Reny, P. (1999). “On the Existence of Pure and Mixed Strategy Nash Equilibria
in Discontinuous Games,” Econometrica 67, 1029-1056.

Sandholm, W. (2010). “Decompositions and Potentials for Normal Form
Games,” Games and Economic Behavior 70, 446-456.

Ui, T. (2000). “A Shapley Value Representation of Potential Games,” Games and
Economic Behavior 31, 121-135.



	Introduction
	Main Results
	Examples
	Discussion

